同時(shí),大尺度的渦旋從主流吸取動(dòng)能,在運(yùn)動(dòng)過(guò)程中傳遞給較小尺度的渦旋,這樣逐級(jí)傳遞,一直到微尺度的渦旋。在較大尺度的渦運(yùn)動(dòng)中,流體粘性幾乎不起作用,可忽略不計(jì),因而在動(dòng)能傳遞中幾乎沒(méi)有能耗;而在微尺度的渦旋運(yùn)動(dòng)中,流體粘性將起主要作用,傳送到這些低級(jí)渦旋的能量就會(huì)通過(guò)粘性作用轉(zhuǎn)化為熱能。水流中同時(shí)存在無(wú)數(shù)大大小小的渦旋,產(chǎn)生一系列的脈動(dòng)頻率,具有連續(xù)的頻譜。
折板絮凝池的設(shè)計(jì)主要控制參數(shù)是水流速度、水頭損失和絮凝時(shí)間,但建成后往往發(fā)現(xiàn)實(shí)際運(yùn)行參數(shù)與設(shè)計(jì)值相差甚遠(yuǎn)。以水頭損失的計(jì)算為例,設(shè)計(jì)手冊(cè)中,其計(jì)算采用的是明渠漸擴(kuò)和漸縮公式,有人通過(guò)研究發(fā)現(xiàn),豎流折板絮凝池水頭損失實(shí)測(cè)值與設(shè)計(jì)計(jì)算值相差較大,實(shí)測(cè)值明顯小于設(shè)計(jì)計(jì)算值。
加強(qiáng)絮凝動(dòng)力學(xué),特別是水流狀態(tài)對(duì)絮凝沉淀效果的影響方面的深入研究。運(yùn)用PIV技術(shù)研究折板絮凝池內(nèi)部流場(chǎng)將是一個(gè)較好的實(shí)驗(yàn)測(cè)試方法。該技術(shù)突破了空間單點(diǎn)測(cè)量技術(shù)的局限性,可在同一時(shí)刻記錄下整個(gè)測(cè)量平面的有關(guān)信息,從而可以獲得流動(dòng)的瞬時(shí)平面速度場(chǎng)、脈動(dòng)速度場(chǎng)、渦量場(chǎng)和雷諾應(yīng)力分布等,因此非常適于研究渦流、湍流等復(fù)雜的流動(dòng)結(jié)構(gòu)。河海大學(xué)已運(yùn)用PIV進(jìn)行了往復(fù)隔板絮凝池內(nèi)部流場(chǎng)的研究,海軍工程大學(xué)進(jìn)行了靜態(tài)混合器的PIV實(shí)驗(yàn)研究。另外可利用近年不斷出現(xiàn)的CFD(Com-putational Fluid Dynamics)商業(yè)軟件,如FLUENT,ANSYS,CFX等模擬分析流場(chǎng)流動(dòng),特別是FLUENT軟件推出的多種優(yōu)化的物理模型如定常和非定常流動(dòng)、層流、紊流、不可壓縮和可壓縮流動(dòng)、傳熱、化學(xué)反應(yīng)等等,可達(dá)到縮短設(shè)計(jì)過(guò)程,減少實(shí)驗(yàn)室測(cè)定試驗(yàn)的數(shù)目,減少產(chǎn)品開(kāi)發(fā)成本的目的。
矩形往復(fù)式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴(yán)重阻礙了水流的運(yùn)動(dòng)。特別是在絮凝后期,水流速度逐漸減小時(shí),死水區(qū)對(duì)水流有越來(lái)越大的的負(fù)面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來(lái)的負(fù)面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
在往復(fù)式折板后面能夠形成渦旋,伴隨著顆粒粒徑在增加,渦旋的尺度由小變大,符合絮凝動(dòng)力學(xué)規(guī)律;通過(guò)比較得出,圓弧形渠道絮凝池的湍流強(qiáng)度變化緩慢,分布更加均勻合理,不僅能夠滿(mǎn)足絮凝前期較大湍流強(qiáng)度的需要,也能滿(mǎn)足絮凝后期顆粒碰撞的湍流強(qiáng)度,證明圓弧轉(zhuǎn)彎渠道形比矩形轉(zhuǎn)彎渠道有更好的絮凝效果。
傳統(tǒng)往復(fù)式絮凝池在矩形渠道拐彎處速度方向改變?yōu)?80°直接轉(zhuǎn)變,而圓弧形渠道拐彎處的速度方向則是逐漸變化,變化比矩形拐彎渠道平緩的多。而其圓弧形拐彎渠道能夠產(chǎn)生慣性離心力,進(jìn)而產(chǎn)生各種微渦旋,根據(jù)王紹文教授提出的“慣性效應(yīng)是絮凝的動(dòng)力學(xué)致因”可知,圓弧形渠道能夠提高絮凝效率,即絮凝效率較高