電解水制氫過程能耗高,被稱為電老虎,而甲醇制氫則能在相對較低的溫度和壓力下進(jìn)行,減少了能源消耗。提高氫氣產(chǎn)率:甲醇制氫具有較高的氫氣產(chǎn)率。通過重整反應(yīng),甲醇可以地轉(zhuǎn)化為氫氣,使得氫氣的產(chǎn)量相對較高。這對于大規(guī)模應(yīng)用氫氣,如氫能源汽車、分布式發(fā)電等領(lǐng)域具有重要意義。
能量釋放充分:氫氣的熱值較高,每單位質(zhì)量的氫氣燃燒釋放的能量約為汽油的 3 倍、天然氣的 2.5 倍。在工業(yè)生產(chǎn)中,相同質(zhì)量的氫氣和其他傳統(tǒng)燃料相比,氫氣能釋放出更多的能量,可有效提高能源的利用效率。
該工程利用焦?fàn)t煤氣中的氫氣成分,在氫基豎爐內(nèi)催化裂解為一氧化碳和氫氣,實(shí)現(xiàn) “自重整”。與傳統(tǒng) “高爐 + 轉(zhuǎn)爐” 的長流程煉鋼模式相比,工藝流程環(huán)節(jié)大幅減少,碳排放量大幅下降。經(jīng)測算,較企業(yè)轉(zhuǎn)型升級前,主要污染物二氧化硫、氮氧化物、煙粉塵排放分別減少 30%、70% 和 80% 以上,噸鋼碳排放降至約 0.5 噸,相較于傳統(tǒng)長流程煉鋼可減少二氧化碳排放約 70%,年可減少二氧化碳排放約 80 萬噸。
通過不斷的仿真和優(yōu)化,使智能管理系統(tǒng)能夠更好地適應(yīng)各種復(fù)雜的實(shí)際運(yùn)行條件。頂部與底部布置:由于氫氣密度比空氣小,在儲氫容器中易聚集在頂部,所以在容器頂部布置壓力和氫氣濃度傳感器,能更準(zhǔn)確地監(jiān)測氫氣的壓力變化和是否存在泄漏聚集的情況。
通過機(jī)器學(xué)習(xí)算法,如神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等,建立的儲氫狀態(tài)預(yù)測模型,能夠更準(zhǔn)確地預(yù)測儲氫容器的壓力、溫度變化趨勢,及時(shí)發(fā)現(xiàn)異常情況。實(shí)施數(shù)據(jù)融合技術(shù):將來自不同傳感器的數(shù)據(jù)進(jìn)行融合處理,綜合分析多個(gè)參數(shù)之間的關(guān)聯(lián)關(guān)系,提高對儲氫狀態(tài)判斷的準(zhǔn)確性。
配位氫化物:這類材料如硼氫化鈉、氨硼烷等,具有較高的儲氫容量。通過對配位氫化物進(jìn)行納米化處理、添加催化劑等方法,可以改善其放氫性能,降低放氫溫度,提高儲氫效率。此外,研究新型的合成路線和回收方法,有望降低配位氫化物的制備和使用成本。